Home

The world is a complex and dynamic place. Earth takes part in an intricate dance with the moon, surrounding planets, our sun, other stars and entire galaxies. All interact with one another determining our position in the universe. On a much smaller scale, humans consist of trillions of cells that work together to let us walk, run, and think. Each such single living cell is driven by the interaction of about a trillion non-living molecules. Life at all scales is complex, dynamic, and difficult to understand. All these examples, however, have in common that they obey the basic laws of physics. Although we can apply those laws to understand a small part of each system, many interacting parts can behave wildly different and unpredictable. By combining theory and experiment, our lab aims at understanding such system dynamics, studying living (Dynamics in Biology) and non-living (Dynamics in Physics) systems.

News

  • Eternal sunshine of the spotless cycle?

    April 2019

    In a recent study, Purvis and colleagues (Chao et al, 2019) quantify cell cycle phase durations in human cells and propose a model whereby cell cycle progression in single cells is a succession of uncoupled, memoryless phases, each composed of a characteristic rate and number of steps. They also suggest that having such memoryless phases is a feature of healthy cells, while cancer cells have correlated phases. Silvia Santos (Crick, London) and Lendert have written a News&Views piece about this article.

  • Do biological timers and sensors work together to coordinate processes in cell signaling?

    January 2019

    In a perspective piece in BioEssays, Junbin Qian, Mathieu Bollen, and Lendert argue that this is indeed the case. Recent data suggest that timers and sensors can work together to guarantee correct timing and responsiveness. By exploring examples of cellular stress signaling from mitosis, DNA damage, and hypoxia, we discuss the common architecture of timer‐sensor integration, and how its added features contribute to the generation of desired signaling profiles when dealing with stresses of variable duration and strength.

  • Pedro reports on how quadratic soliton combs are formed in Optics Letters

    December 2018

    In a joint effort with Tobias Hansson, Stefan Wabnitz, and François Leo, Pedro investigated theoretically the dynamics of quadratic frequency combs in a dispersive second-harmonic generation cavity system. We identified different dynamical regimes and demonstrated that the same system can exhibit both bright and dark localized cavity solitons in the absence of a temporal walk-off. These results are published in two Optics Letters papers, see here and here.