The world is a complex and dynamic place. Earth takes part in an intricate dance with the moon, surrounding planets, our sun, other stars and entire galaxies. All interact with one another determining our position in the universe. On a much smaller scale, humans consist of trillions of cells that work together to let us walk, run, and think. Each such single living cell is driven by the interaction of about a trillion non-living molecules. Life at all scales is complex, dynamic, and difficult to understand. All these examples, however, have in common that they obey the basic laws of physics. Although one can apply those laws to understand a small part of each system, many interacting parts can behave wildly different and unpredictable.

Our lab seeks to gain a fundamental understanding of the dynamical processes that coordinate living systems by using an interdisciplinary approach combining experimental biology and theoretical physics. More specifically, we aim to create artificial cells displaying life-like behavior, both through in vitro experiments and in silico models.

Oscillations

Spatial wave patterns

Frog egg extracts

Embryonic development

 

News

November 17, 2021

Felix successfully defended his PhD

Felix convincingly presented his PhD work entitled “Mathematical modeling of nuclei as pacemakers of cell cycle oscillations”. It was a...
Read More
September 15, 2021

Jolan successfully defended his PhD

In the context of a joint PhD with Prof. Verfaillie of the Stem Cell institute,  Jolan presented his PhD work ...
Read More
1 2 3 26