The world is a complex and dynamic place. Earth takes part in an intricate dance with the moon, surrounding planets, our sun, other stars and entire galaxies. All interact with one another determining our position in the universe. On a much smaller scale, humans consist of trillions of cells that work together to let us walk, run, and think. Each such single living cell is driven by the interaction of about a trillion non-living molecules. Life at all scales is complex, dynamic, and difficult to understand. All these examples, however, have in common that they obey the basic laws of physics. Although one can apply those laws to understand a small part of each system, many interacting parts can behave wildly different and unpredictable.

Our lab seeks to gain a fundamental understanding of the dynamical processes that coordinate living systems by using an interdisciplinary approach combining experimental biology and theoretical physics. More specifically, we aim to create artificial cells displaying life-like behavior, both through in vitro experiments and in silico models

November 2, 2022

Welcome Daniel

Welcome Daniel as the newest member of our lab! He will be working on modeling the nonlinear spatial coordination of…
Read More
August 4, 2022

Lab retreat of DiBS lab in Borgloon

This year the DiBS lab went on a lab retreat at the Castle van Gors near Borgloon. During 3 days…
Read More