The world is a complex and dynamic place. Earth takes part in an intricate dance with the moon, surrounding planets, our sun, other stars and entire galaxies. All interact with one another determining our position in the universe. On a much smaller scale, humans consist of trillions of cells that work together to let us walk, run, and think. Each such single living cell is driven by the interaction of about a trillion non-living molecules. Life at all scales is complex, dynamic, and difficult to understand. All these examples, however, have in common that they obey the basic laws of physics. Although one can apply those laws to understand a small part of each system, many interacting parts can behave wildly different and unpredictable.

Our lab seeks to gain a fundamental understanding of the dynamical processes that coordinate living systems by using an interdisciplinary approach combining experimental biology and theoretical physics. More specifically, we aim to create artificial cells displaying life-like behavior, both through in vitro experiments and in silico models.

News
October 1, 2016

Alexandra joins the lab

Welcome to the lab Alexandra, congratz on a great PhD thesis and we’re very happy to have you on board…
Read More
June 30, 2016

Pedro published two new papers on dark solitons

Congratulations to Pedro for publishing his work on localized states and optical frequency combs in normal dispersion cavities. See his…
Read More