The world is a complex and dynamic place. Earth takes part in an intricate dance with the moon, surrounding planets, our sun, other stars and entire galaxies. All interact with one another determining our position in the universe. On a much smaller scale, humans consist of trillions of cells that work together to let us walk, run, and think. Each such single living cell is driven by the interaction of about a trillion non-living molecules. Life at all scales is complex, dynamic, and difficult to understand. All these examples, however, have in common that they obey the basic laws of physics. Although one can apply those laws to understand a small part of each system, many interacting parts can behave wildly different and unpredictable.

Our lab seeks to gain a fundamental understanding of the dynamical processes that coordinate living systems by using an interdisciplinary approach combining experimental biology and theoretical physics. More specifically, we aim to create artificial cells displaying life-like behavior, both through in vitro experiments and in silico models.

News
May 2, 2023

Cell cycle oscillations driven by two interlinked bistable switches

Negative feedback is at the heart of cell cycle oscillations: active cyclin B-Cdk1 activates the Anaphase-Promoting Complex-Cyclosome, which triggers the…
Read More
January 17, 2023

Welcome Martina!

We are happy to welcome our new PhD student Martina to our lab! Martina studied biomedical engineering in Milan, Italy,…
Read More
1 2 3 33